Articles

Gas-Phase Iron Tricarbonyl Cyclooctatetraene Exhibits a "Rigid-Rotor" Microwave Spectrum

S. G. Kukolich,* S. M. Breckenridge-Estes, and S. M. Sickafoose

Department of Chemistry, University of Arizona, Tucson, Arizona 85721

Received July 18, 1997[⊗]

The microwave rotational spectrum of $(\eta^4-C_8H_8)$ Fe(CO)₃ was measured in the 4–12 GHz range using a pulsedbeam, Fourier transform spectrometer system. Nearly all strong transitions can be fit using a near-rigid-rotor model with very small centrifugal distortion terms. These results indicate that this complex has a fairly rigid structure in the gas phase, with no observed evidence for fluxional behavior or internal rotation on the microwave time scale ($\tau < 10^{-4}$ s). These gas-phase observations initially appeared to be in sharp contrast to the solution NMR studies, where this complex is observed to be a "ring whizzer" with cyclic 1,2 carbon shifts. Further analysis indicates these two sets of measurements are compatible since, with an intermediate level barrier to internal motion ($V > 500 \text{ cm}^{-1}$), the structure would appear rigid on the microwave time scale, yet could appear quite fluxional on the much longer NMR time scale. The rotational constants are A = 825.2559(2), B = 510.5149-(1), and C = 462.5246(1) MHz. Centrifugal distortion constants are $\Delta_J = 0.0146(5)$, $\Delta_{JK} = 0.015(3)$, $\Delta_K = 0.0$ 0.049(4), $\delta_I = 0.0034(3)$, and $\delta_K = -0.092(6)$ kHz. The measured rotational constants all agree with those calculated from the X-ray structure to within 0.3%. The excellent agreement between the rotational constants makes it very likely that the solid-state and gas-phase structures are nearly identical.

Introduction

The iron tricarbonyl cyclooctatetraene complex is one of the earliest reported examples of fluxional molecules.¹ Only a single proton resonance was observed^{1,2} for the solution NMR spectrum, indicating a fairly rapid exchange of cyclooctatetraene (COT) protons. This work was preceded by similar observations of single lines for the proton spectrum³ of $(\eta^5-C_5H_5)$ Fe(CO)₂- $(\eta^2-C_5H_5)$ and the ¹³C spectrum⁴ of Fe(CO)₅. These results were all interpreted as indications of "fluxional behavior" of the complexes.¹ For the COT complex, the motion was described^{5,6} as sequential, cyclic 1,2 shifts of the ring carbon atoms relative to the Fe(CO)₃ group, and this complex was called⁵ a "ring whizzer". For the proton spectrum of the (COT)Fe(CO)₃ complex, the limiting spectrum (with the internal motion frozen out) was not obtained¹ by lowering the temperature of the solution. For the (COT)Ru(CO)₃ complex, however, at low temperatures, a well-resolved limiting spectrum was obtained.⁷ In subsequent work,⁶ limiting ¹³C spectra were obtained for the (COT)Fe(CO)₃ and (COT)Ru(CO)₃ complexes.

Olefin transition metal complexes are important because they may be used as models for olefin-metal interactions, which are important in catalysis. Changes in the conformation of the olefin on complexation can have significant effects on the energetics and kinetics of subsequent reactions.

For benzene, the high-stability equal carbon-carbon bond lengths and other interesting properties are attributed to the

- (3) Wilkinson, G.; Piper, T. S. J. Inorg. Nucl. Chem. 1956, 100, 29.
 (4) Cotton, F. A.; Danti, A.; Waugh, J. S.; Fesenden, R. W. J. Chem. Phys. 1958, 29, 1427.
- (5) Faller, J. W. Adv. Organomet. Chem. 1977, 16, 211.
- (6) Cotton, F. A.; Hunter, D. L. J. Am. Chem. Soc. 1976, 98, 1413. (7) Bratton, W. K.; Cotton, F. A.; Davison, A.; Musco, A.; Faller, J. W.
- Proc. Natl. Acad. Sci. U.S.A. 1967, 58, 1324.

Figure 1. Molecular structure for iron tricarbonyl cyclooctatetraene: (a) arbitrary-axis view; (b) view down the b principal axis, with numbering of carbon atoms indicated. Coordinates are from the X-ray work.10

resonance stabilization and aromatic character of this important molecule. Cyclooctatetraene, on the other hand, is predicted to lack sufficient resonance stabilization, and the free molecule is nonplanar. Free cyclooctatetraene adopts a "tub" structure^{8,9} and has the chemical properties of a nonaromatic polyolefin. The crystal structure for the iron tricarbonyl cyclooctatetraene complex was reported in 1962 by Dickens and Lipscomb.¹⁰ The COT ligand is asymmetrically bound to Fe(CO)₃. The Fe(CO)₃ is apparently η^4 -bonded to a butadiene-like portion of the COT ring. The two ethylene like regions which are not complexed to the iron atom are distorted from the "tub" conformation to form a near-planar structure for that portion of the COT ligand. The X-ray structure is shown in Figure 1.

The microwave spectroscopy study was initiated with the expectation that effects of nonrigid behavior, similar to internal

- Bordner, J.; Parker, R. G.; Stanford, R. H., Jr. Acta Crystallogr. 1972, 26B, 1069.
- (10) Dickens, B.; Lipscomb, W. N. J. Chem. Phys. 1962, 37, 2084.

[®] Abstract published in Advance ACS Abstracts, October 1, 1997.

⁽¹⁾ Cotton, F. A. J. Organomet. Chem. 1975, 100, 29.

⁽²⁾ Manual, T. A.; Stone, F. G. A. Proc. Chem. Soc., London 1959, 90; J. Am. Chem. Soc. 1960, 82, 366.

⁽⁸⁾ Bastiansen, O.; Hedberg, L.; Hedberg, K. J. Chem. Phys. 1957, 27, 1311.

Table 1. Transition Frequencies for Iron Tricarbonyl Cyclooctatetraene Which Can Be Fit to a Rigid-Rotor Model with Small Centrifugal Distortion Terms^{*a*}

J′	$K_{\rm p}'$	$K_{\rm o}'$	J	$K_{\rm p}$	$K_{\rm o}$	measd	calcd	dev	J'	$K_{\rm p}'$	$K_{\rm o}'$	J	$K_{\rm p}$	$K_{\rm o}$	measd	calcd	dev
3	2	2	2	1	2	4007.310	4007.310	0.0004	7	1	6	6	1	5	6892.157	6892.158	-0.0015
3	3	0	2	2	0	4611.075	4611.075	0.0001	8	1	7	7	2	5	6908.504	6908.505	-0.0003
3	3	1	2	2	1	4615.817	4615.816	0.0006	6	2	5	5	1	5	7207.654	7207.653	0.0006
5	1	5	4	1	4	4726.237	4726.237	0.0003	5	4	1	4	3	1	7237.139	7237.140	-0.0006
5	0	5	4	0	4	4777.200	4777.201	-0.0006	5	4	2	4	3	2	7239.331	7239.326	0.0052
4	2	2	3	1	2	4836.513	4836.512	0.0003	6	3	3	5	2	3	7459.752	7459.752	-0.0004
5	2	4	4	2	3	4853.910	4853.909	0.0005	6	3	4	5	2	4	7593.050	7593.049	0.0008
5	4	2	4	4	1	4876.467	4876.467	-0.0006	9	1	8	8	2	6	7717.451	7717.449	0.0016
5	4	1	4	4	0	4876.615	4876.616	-0.0009	8	2	7	7	2	6	7724.368	7724.368	-0.0002
5	3	3	4	3	2	4879.380	4879.379	0.0004	8	6	3	7	6	2	7803.547	7803.546	0.0010
6	õ	6	5	1	4	4882.511	4882.511	-0.0002	8	5	3	7	5	2	7809.403	7809.404	-0.0013
5	3	2	4	3	1	4886.324	4886.322	0.0013	8	3	6	7	3	5	7810.936	7810.937	-0.0016
5	2	3	4	2	2	4941 750	4941 750	0.0008	8	4	Š	7	4	4	7817 629	7817 630	-0.0009
5	1	4	4	1	3	4959.244	4959.242	0.0020	7	2	5	6	1	5	7821.456	7821.458	-0.0017
4	2	3	3	1	3	5051.393	5051.393	0.0005	8	4	4	7	4	3	7823.491	7823.492	0.0000
6	1	5	5	2	3	5089 854	5089 852	0.0017	8	1	7	7	1	6	7837 804	7837 804	-0.0003
5	1	4	4	õ	4	5596 072	5596.072	0.0003	8	3	5	7	3	4	7881 699	7881 701	-0.0025
4	3	2	3	2	2	5598.076	5598.076	-0.0003	5	5	0	, 4	4	Ó	7914 595	7914 598	-0.0028
6	1	6	5	1	5	5662 019	5662 018	0.0014	5	5	1	4	4	1	7914.616	7914.616	0.00020
6	0	6	5	0	5	5701 383	5701 382	0.0014	7	1	6	6	0	6	7941 623	7941 623	0.0003
9	4	6	8	5	4	5781 526	5781 525	0.0002	8	2	6	7	2	5	7960 485	7960 485	-0.0001
5	2	3	4	1	3	5801 366	5801 366	-0.0000	6	4	2	5	3	2	8206 769	8206 769	0.0005
9	4	5	8	5	3	5803 729	5803 730	-0.0012	6	4	3	5	3	3	8215 235	8215 235	-0.0003
6	2	5	5	2	4	5815 532	5815 538	-0.0012	7	3	4	6	2	4	8381 729	8381 731	-0.0005
6	5	2	5	5	1	5850 990	5850 986	0.0005	ģ	1	9	8	1	8	8453 162	8453 163	-0.0013
6	1	3	5	1	2	5855 287	5855 288	-0.0040	10	1	9	9	2	7	8457.046	8457.046	0.0003
6	4	2	5	4	1	5855 951	5855 952	-0.0007	9	0	ģ	8	õ	8	8463 710	8463 710	-0.0001
6	3	1	5	3	3	5857 694	5857 693	0.0000	8	3	5	7	2	5	9303 836	9303 838	-0.0004
6	3	3	5	3	2	5875 665	5875 664	0.0002	10	0	10	ģ	õ	ģ	9386 311	9386 308	0.0021
8	2	7	7	3	5	5884 053	5884 053	0.0000	8	2	7	7	1	7	9447 795	9447 794	0.00054
6	1	5	5	1	1	5931 976	5931 976	-0.0000	6	6	ó	5	5	ó	9565 110	9565 108	0.0000
6	2	1	5	2	3	5951.716	5951.776	0.0002	g	2	7	8	1	7	10003.074	10003.075	-0.0010
7	1	6	6	2	1	6030 295	6030 294	0.0002	ó	3	6	8	2	6	10241 751	10241 752	-0.0011
5	2	4	4	1	4	6118 352	6118 352	0.0007	11	1	11	10	1	10	10241.751	10241.752	-0.0010
8		8	7	1	+ 6	6222 645	6222 645	0.0002	11	0	11	10	0	10	10300.303	10300.303	-0.0019
1	4	0	3	3	0	6263 020	6263 015	0.0000	0	1	8	8	0	8	10384 586	10384 580	-0.0003
1	4	1	3	3	1	6264 232	6264 235	-0.0033	7	6	2	6	5	2	10539 669	10539 675	-0.0029
Q A	3	7	8	1	5	6/18 7/6	6/18 7/15	0.0013	11	2	10	10	2	õ	10550 312	10550 311	0.0009
5	3	2	1	2	2	6525 838	6525 838	0.0013	0	$\frac{2}{2}$	8	8	1	8	10594 039	10594 039	0.0000
9	1	9	8	2	7	6530 226	6530 227	-0.0005	11	1	10	10	1	9	10606 876	10606 876	-0.0003
8	2	6	7	3	1	6538 3/19	6538 348	0.0003	8	5	10	7	1	1	10836 692	10836 691	0.0003
5	23	3	1	2	3	6580 264	6580 265	-0.0003	11	3	8	10	3	7	10037.765	10037.766	-0.0011
7	1	7	-	1	6	6594 692	6504 602	0.0008	0	4	5	8	3	5	11051 283	11051 284	-0.0013
7	0	7	6	0	6	6621.065	6621.064	0.0002	10	2	8	0	1	8	11162 523	11162 518	0.0013
ó	2	8	8	3	6	6744 220	6744 219	0.0009	0	4	6	8	3	6	11165 256	11165 256	-0.0047
6	1	5	5	0	5	6750 847	6750 847	-0.0010	7	7	0	6	6	0	11215 503	11215 502	0.0000
7	2	5	6	2	5	6772 482	6772 483	-0.0002	7	7	1	6	6	1	11215.593	11215.592	0.0007
6	2	4	5	1	1	6703 840	6703 840	-0.0003	10	1	0	0	0	0	11215.595	11215.592	-0.0000
7	∠ 5	2	5	5	4	6820 /11	6820 /11/	-0.0001	10	2	2	7 0	1	7 0	11753 700	11753 780	0.0017
7	2	∠ 5	6	3	1	6835 786	6835 786	0.0033	10	23	7 Q	2 0	2	7 Q	11700 878	11700 876	0.0010
7	1	1	6	5	4	6835 722	6835 722	0.0000	0	5	4	7 8	2 1	0	11/20.020	11801 755	0.0025
7	+ 1	+ 2	6	-+ /	2	6837 005	6837 002	0.0001	2 0	5	4 5	o Q	-+ /	4	11800.732	11800.730	0.0013
7	4	5 1	6	4	∠ 3	6873 693	6873 694	-0.0031	7	5	5	0	+	5	11007.723	11007.720	0.0022

^a The calculated values were obtained from a least-squares fit with parameters given in Table 2. All frequencies are in megahertz. "dev" (MHz) is the measured minus the calculated frequency. The standard deviation for the fit was 1.8 kHz.

rotation, would be observed in the spectrum. The observed spectrum was that of a rigid rotor.

105 measured transition frequencies, which were used to obtain the molecular parameters, are given in Table 1. Many other, weaker, transitions were observed, and we believe that these transitions are most likely due to the 54 Fe and 13 C isotopomers.

Experimental Section

Data Analysis

The sample was purchased from Strem (No. 26-0875) and used without further purification. Microwave transitions were measured in the 4-12 GHz range using a Flygare-Balle type pulsed-beam spectrometer system.¹¹ The sample and pulse valve (General Valve 9-181) were maintained at 70–80 °C to obtain sufficient vapor pressure of the complex. The sample was mixed with neon at 0.6–1.0 atm and pulsed into the Fabry Perot microwave cavity for measurements of the spectrum. The statistical uncertainty in the line center measurements ranged from 0.1 to 3 kHz. There are over 250 transitions for the normal isotopomer in the 4–12 GHz range which should be observable. The

Two views of the structure of the iron tricarbonyl cyclooctatraene complex, as determined from the X-ray data,¹⁰ are shown in Figure 1. Hydrogen atom coordinates were not obtained from the X-ray data but were estimated by using a C–H bond length of 1.08 Å and placing the C–H bonds near the plane of the local carbon atoms. We note from Figure 1b, which shows a view down the *b* principal axis, that this complex would

⁽¹¹⁾ Bumgarner, R. E.; Kukolich, S. J. Chem. Phys. 1987, 86, 1083.

Table 2. Molecular Constants for Iron Tricarbonyl

Cyclooctate traene Obtained from the Least-Squares Fit to Transition Frequencies Listed in Table 1^a

param	value	param	value	param	value
A (MHz)	825.2559(2)	Δ_J (kHz)	0.0146(5)	δ_J (kHz)	0.0034(3)
C (MHZ)	462.5246(1)	Δ_{JK} (kHz) Δ_{K} (kHz)	0.013(3)	$O_K(\mathbf{KHZ})$	-0.092(0)

 a Error limits are 2σ , and the standard deviation for the fit was 1.8 kHz.

be expected to have both *a*-axis and *c*-axis dipole moment components. We therefore assigned observed transitions to quantum numbers appropriate for *a*-dipole and *c*-dipole selection rules.

The measured transition frequencies listed in Table 1 were fit using a distortable rigid-rotor Hamiltonian with seven adjustable parameters. The A-reduced Hamiltonian in the I^r representation,¹² with rotational constants A, B, and C, and the five quartic distortion parameters Δ_J , Δ_{JK} , Δ_K , δ_J , and δ_K were used in a nonlinear least-squares fit to determine parameter values. The "best fit" parameter values, with 2σ error limits, are listed in Table 2. The centrifugal distortion terms are quite small, consistent with a fairly rigid complex. The rotational constants, calculated using the X-ray structure¹⁰ with hydrogen atoms added, are A = 827.22, B = 512.03, and C = 463.20MHz. These values are in excellent agreement with observed rotational constants. This agreement can be interpreted as an indication that the gas-phase and solid-state structures are almost identical. We would not expect significant changes in bond lengths, and it is quite unlikely that the angles would be distorted in the solid in such a way that effects on the moments of inertia of two or more such distortions would cancel. The standard deviation for the fit of 1.8 kHz is close to estimated experimental errors for the measurements. The relative error limits (2σ) for the parameters listed in Table 2 are extremely small, and this is also consistent with a rigid-rotor spectrum.

Discussion

The gas-phase rotational spectrum of iron tricarbonyl cyclooctatetraene can be fit very precisely using a rigid-rotor model. None of the microwave measurements, in our opinion, show evidence for hindered internal rotation or more complex internal motions. In retrospect, these results are quite compatible

with the solution NMR work, since Cotton and Hunter⁶ obtained a barrier height of 8.1 kcal for the "ring-whizzing" motion. A barrier as high as this (2800 cm⁻¹) would cause line splittings due to internal rotation which would be much too small to observe since typical microwave line widths are 10-20 kHz (fwhm) for the Flygare-Balle spectrometer. In the NMR experiments the "sampling time" during which the transition is observed is in the range of seconds to minutes. If the internal motion (1,2 shifts or "ring whizzing") takes place more rapidly than this, one sees a "single-line" spectrum with a chemical shift which is an average over the chemical shifts for the various proton or ¹³C sites in the complex. If the barrier to the internal motion were approximately 4000 cm⁻¹, or greater, the steps in the internal motion would take place much slower than the "sampling time", and a resolved or nearly-resolved spectrum would be obtained.

Summary

A near-rigid-rotor spectrum was observed for iron tricarbonyl cyclooctatetraene, and accurate and precise values for the rotational constants and centrifugal constants were obtained. The experimental A. B. and C values are in excellent agreement with those calculated for the X-ray structure, indicating that the gasphase and solid-state structures are nearly the same. The presence of a barrier to internal motion of 500 cm⁻¹ or higher would cause splittings too small to be resolved, resulting in a "rigid-rotor" type microwave spectrum. This "low barrier" however would still allow sufficiently rapid internal motion to observe a "single-line" NMR spectrum, since the NMR time scale is 4 or more orders of magnitude longer than the microwave time scale. We propose that this "intermediate-barrier" behavior is fairly common and should apply to many "fluxional" organometallic complexes, where the barriers are between 500 and 4000 cm^{-1} .

Acknowledgment. Support from the National Science Foundation (Grant CHE 9634130) is gratefully acknowledged. Construction of the pulsed-beam spectrometer was also supported by the NSF. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. We are extremely grateful to Mike Bruck for help with the X-ray data. S.M.B.-E. and S.M.S. participated in the University of Arizona/ NASA Space Grant Undergraduate Research Internship Program.

IC970902+

⁽¹²⁾ Watson, J. K. G. J. Chem. Phys. **1968**, 48, 4517. Watson, J. K. G. In Vibrational Spectra and Structure; James R. Durig, J. R., Ed.; Elsevier: New York, 1977; Vol. 6, pp 1–89.